Monday, August 13, 2018

Gardener's Hallucinosis?

Interesting experience yesterday, Sunday.

Spent ~5hrs outside in the gardens, pulling weeds. Had done the same for a few hours on Saturday. When I came inside for good, about 5 or 6, I started to hallucinate during blinks - when I blinked my eyes, especially when not prepared for it, I would see images of the plants I had been pulling all day. Sometimes very clear, seeing leaves with their serrations and textures, and tendrils curling around - the images were coherent and (mutedly) colorful, seemingly randomly selected but each was a recognizable one of the real plants I had seen, mostly members of the 2 or 3 most common weeds of the day.

Sometimes the images were strong enough to be distracting, making it hard to see - or to recognize - what was actually before my eyes. But I think they were only actually visible during the blinks. I managed over time to notice some properties of the images - I could hold my eyes closed after an effective blink. It was still unclear to what extent I was *really* seeing the fine details, or whether the actual images were coarser and just 'suggesting', as in normal visual imagery, the fine details. Holding my eyes shut, it seemed that the form of the afterimages or noise, in the eyes-shut darkness, guided the structure of the hallucination: spots of afterimage seemed to appear as leaves, streaks as stems or tendrils. But it was not so clear as to be certain of this.

The experience lasted until I went to bed, 6 or 7 hours later, but it had attenuated by then. I slept and remembered several dreams that had nothing at all to do with plants (one I remember, now, was that my lab seemed to be based in the house I grew up in, and some newcomers were using space in the den - dream-Giulio warned me not to give them to much space, or they'll think they can take more). When I woke up this morning, the phenomenon returned for another hour or so, but is gone now.

The phenomenon resembled, to me, the kinds of hypnogogic hallucinations some people have after long, repeated activity ('the Tetris effect'), but I can't find reports of this in normal waking experience (albeit during blinks). I described it to Giulio and others, the physiological explanations are kind of clear, but as to why it happened to me and why it isn't much more common, that's an open, strange question.

Another thing it reminded me of, was back in the migraine days, seeing geometric web patterns after waking, sometimes during blinks. Similar kind of dynamic, but I don't think those experiences ever lasted more than minutes, definitely not many hours.

Tuesday, February 06, 2018

IIT and Star Trek

[I originally posted this to a Star Trek forum because I am a Star Trek nerd but here it is for better posterity:]

"Complex systems can sometimes behave in ways that are entirely unpredictable. The Human brain for example, might be described in terms of cellular functions and neurochemical interactions, but that description does not explain human consciousness, a capacity that far exceeds simple neural functions. Consciousness is an emergent property.” - Lt.Cmdr. Data

A post the other day about strong AI in ST provoked me to think about one of my pet theories, there in the title: Data is conscious, the Doctor is not, and other cases can be inferred from there. Sorry that this is super long, but if you guys don't read it I don't know who will, and my procrastination needs an outlet.

First, some definitions. Consciousness is a famously misunderstood term, defined differently from many different perspectives; my perspective is that of a psychologist/neuroscientist (because that is what I am), and I would define consciousness to mean “subjective phenomenal experience”. That is, if X is conscious, then there is “something it is like to be X”.

There are several other properties that often get mixed up with consciousness as I have defined it. Three, in particular, are important for the current topic: cognition, intelligence, and autonomy. This is a bit involved, but it’s necessary to set the scene (just wait, we’ll get to Data and the Doctor eventually):

Cognition is a functional concept, i.e. it is a particular suite of things that an information processing system does, specifically it is the type of generalized information processing that an intelligent autonomous organism does. Thinking, perceiving, planning, etc, all fall under the broad rubric of “cognition”. Humans are considered to have complex cognition, and they are conscious, and those two things tend to be strongly associated (your cognition ‘goes away’ when you lose consciousness, and so long as you are conscious, you seem to usually be ‘cognizing’ about things). But it is well known that there is unconscious cognition (for example, you are completely unaware of how you plan your movements through a room, or how your visual system binds an object and presents it as against a background, how you understand language, or how you retrieve memories, etc) - and some theorists even argue that cognition is entirely unconscious, and we experience only the superficial perceptual qualities that are evoked by cognitive mechanisms (I am not sure about that). We might just summarize cognition as “animal-style information processing”, which is categorically different from “what it’s like to be an animal”.

Intelligence is another property that might get mixed up with consciousness; it is generally considered, rather crudely, as “how well” some information processing system handles a natural task. While cognition is a qualitative property, intelligence is more quantitative. If a system handles a ‘cognitive' task better, it is more intelligent, regardless of how it achieved the result. Conceiving of intelligence in this way, we understand why intelligence tests usually measure multiple factors: an agent might be intelligent (or unintelligent) in many different ways, depending on just what kinds of demands are being assessed. “Strong AI” is the term usually used to refer to a system that has a general kind of intelligence that is of a level comparable to human intelligence - it can do what a human mind can do, about as well (or better). No such thing exists in our time, but there is little doubt that such systems will eventually be constructed. Just like with cognition, there is an obvious association between consciousness and intelligence - your intelligence ‘goes away’ when you lose consciousness, etc. But it seems problematic to suppose that someone who is more intelligent is more conscious (does their experience consist of “more qualia”? What exactly does it have more of, then?), and more likely that they are simply better-able to do certain types of tasks. And it is clear, to me at least, that conscious experience is possible in the absence of intelligent behavior: I might just lie down and stare at the sky, meditating with a clear mind - I’m not “doing” anything at all, making my intelligence irrelevant, but I’m still conscious.

Autonomy is the third property that might get mixed up with consciousness. We see a creature moving around in the environment, navigating obstacles, making choices, and we are inclined to see it as having a sort of inner life - until we learn that, no, it was remote-controlled all along, and then that apparent inner life vanishes. If a system makes its own decisions, if it is autonomous, then it has, for human observers at least, an intrinsic animacy (this tendency is the ultimate basis of many human religious practices), and many would identify this with consciousness. But this is clearly just an observer bias: we humans are autonomous, and we assume that we are all conscious (I am; you are like me in basic ways, so I assume you are too), and so we conflate autonomy with consciousness. But, again, we can conceive of counter-examples - a patient with locked-in syndrome has no autonomy, but they retain their consciousness; and an airplane on autopilot has real (if limited) autonomy, but maybe it’s really just a complex Kalman filter in action, and why should a Kalman filter be conscious (i.e. “autonomy as consciousness” just results in an endless regression of burden-shifting - it doesn’t explain anything)?

To reiterate, consciousness is “something it’s like to be” something - there’s something-it’s-like-to-be me, for example, and likewise for you. We can turn this property around and query objects in nature, and then it gets hard, and we come to our current problem (i.e. Data and the Doctor). Is there something-it’s-like-to-be a rock? Certainly not. A cabbage? Probably not. Your digestive system? Maybe, but probably not. A cat? Almost certainly. Another human? Definitely. An autonomous, intelligent, android with human-style cognition? Hmmm… What if it’s a hologram? Hmmm….

That list I just gave (rock; cabbage; etc) was an intuition pump: most of us will agree that a rock, or a cabbage, has no such thing as phenomenal consciousness; most of us will agree that animals and other humanoids do have such a thing. What makes an animal different from a rock? The answer is obvious: animals have brains. Natural science makes clear that human consciousness (as well as intelligence, etc) relies on the brain. Does this mean that there’s something special about neurons, or synapses, or neurotransmitters? Probably not, or, at least there’s no reason to suppose that those are the magic factors (The 24th century would agree with this; see Data’s quote at the top of this essay). Instead, neuroscientists believe that consciousness is a consequence of “the way the brain is put together”, i.e. the way its components are interconnected. This interconnection allows for dynamically flexible information processing, which gives the overt properties we have listed, but it also somehow permits existence of a subjective point of view - the conscious experience. Rocks and cabbages have no such system of dynamical interconnections, so they’re clearly out. Brains seem to be special in this regard: they are big masses of complex dynamical interconnection, and so they are conscious.

What I’m describing here is, roughly, something called the “dynamic core hypothesis”, which leads into my favored theory of consciousness: “integrated information theory”. You can read about these here:http://www.scholarpedia.org/article/Models_of_consciousness The upshot of these theories is that consciousness arises in a system that is densely interconnected with itself. It is important to note here that computer systems do not have this property - a computer ultimately is largely a feed-forward system, with its feedback channels limited to long courses through its architecture, so that any particular component is strictly feed-foward. A brain, by contrast, is “feedback everywhere” - if a neuron gets inputs from some other neurons, then it is almost certainly sending inputs back their way, and this recurrent architecture seems implemented at just about every scale. It’s not until you get to sensorimotor channels (like the optic nerves, or the spinal cord) that you find mostly-feed-forward structures in the brain, which explains why consciousness doesn’t depend on the peripheral nervous system (it’s ‘inputs and outputs’). Anyways, this kind of densely interconnected structure is hypothesized to be the basis of conscious experience; the fact that the structure also ‘processes information’ means that such systems will also be intelligent, etc, but these capacities are orthogonal to the actual structure of the system’s implementation.

So, Data. Maybe Data isn’t conscious, but just gives a great impression of a conscious being: he’s autonomous, he’s intelligent, he has a sophisticated cognitive apparatus. Maybe there’s nothing “inside” - ultimately, he’s just a bunch of software running on a robotic computer platform. People treat him like he’s conscious (Maddox excepted) just because of his convincing appearance and behavior. But I don’t think it’s an illusion - I think Data is indeed conscious. 

Data’s “positronic brain” is, in a sense, a computer; it’s artificial and made from artificial materials, it’s rated in operations per second, it easily interfaces with other more familiar kinds of computers. But these are really superficial properties, and Data’s brain is different from a computer in the ways that really matter. It is specifically designed to mimic the structure of a human brain; there are numerous references throughout TNG that suggest that Data’s brain consisted critically of a massive network of interconnected fibers or filaments, intentionally comparable to the interconnected neurons of a biological brain (data often refers to these structures as his “neural nets”). This is in contrast to the ‘isolinear chip-bound’ architecture of the Enterprise computer. Chips are complicated internally - presumably each one acts as a special module that is expert in some type of information processing task - but they must have a narrow array of input and output contacts, severely limiting the extent to which a chip can function as a unit in a recurrently connected network (a neuron in a brain is the opposite: internally it is simple, taking on just a few states like “firing” or “not firing”, but it makes tens of thousands of connections on both input and output sides, with other neurons). The computer on 1701-D seems, for all intents and purposes, like a huge motherboard with a ton of stuff plugged into it (we can get to the Intrepid class and its ‘bio-neural chips’ in just a bit).

Data, then, is conscious in virtue of his densely recurrently interconnected brain, which was exactly the intention of Dr Soong in constructing him – Soong didn’t want to create a simulation, he wanted to create a new being. I contrast Data at first with the Enterprise computer, which is clearly highly intelligent and capable of some degree of autonomy (as much as the captain will give it, if you believe Picard in 'Remember Me’). I won’t surmise anything about “ship cognition”, however. Now, if the ship’s computer walked around the ship in a humanoid body (a la EDI of the Mass Effect series), we might be more inclined to see a ghost in the machine, but because of the ship’s relatively compartmentalized ‘chip focused’ structure and it’s lack of a friendly face, I think it’s very easy to suppose that the computer is not conscious. But holographic programs running on that very same computer start to pull at our heartstrings - Moriarty, Minuet, but especially… the Doctor.

The Doctor is my favorite Voyager character (and Data is my favorite of TNG), because his nature is just so curious. Obviously the hologram “itself” is not conscious - it’s just a pattern of projected photons. The Doctor’s mind, such as it is, is in the ship’s medbay computer (or at times, we must assume, his mobile emitter) - he’s something of an instantiation of the famous ‘brain in a vat’ thought experiment, body in one place, mind in another. The Doctor himself admits that he is designed to simulate human behavior. The Voyager crew at first treats him impersonally, like a piece of technology - as though they do not believe he is “really there”, i.e. not conscious - but over time they warm to his character and he becomes something of an equal. I think, however, that the crew was ultimately mistaken as to the Doctor’s nature - he was autonomous, intelligent, and a fine simulation of human cognition and personality, but he was most likely not a conscious being (though he may have claimed that he was).

Over and over, we hear the Doctor refer to himself as a program, and he references movement of his program from one place to another; his program is labile and easily changed. This suggests that his mind, at any given moment, is not physically instantiated in a substrate. What I mean by this is that while a human mind (or Soong-type android mind) is immediately instantiated in a pattern of activity across trillions of synapses between physically-realized interconnected elements, the Doctor’s mind is not. His mind is a program stored in an array of memory buffers, cycling through a system of central processors – at any given moment, the Doctor’s mind just just those few bits that are flowing through a data bus between processor and memory (or input/output channel). The “rest of him”, so to speak, is inert, sitting in memory, waiting to flow through the processor. In other words, he is a simulation. Now, to be sure, in a lot of science fiction brains are treated as computers, as though they are programmable, downloadable or uploadable, but in general this is a very flawed perspective - brains and computers actually have very little in common. The Star Trek universe seems to recognize this, as I can’t think of any instances of outright abuse of this trope in a ST show. One important exception stands out: Ira Graves.

Ira Graves is a great cyberneticist, so let’s assume he knows his stuff (let’s forget about Maddox, who was a theoretically impoverished engineer). He believes that he can save his consciousness by moving it into Data’s brain. But Data’s brain is not a computer in any ordinary sense, as we detailed above: it’s a complex of interconnected elements made to emulate the physical structure of a human brain. (This is why his brain is such an incredible achievement: Data’s brain isn’t a miniaturized computer, it’s something unique and extraordinarily complex. This is why Lal couldn’t just be saved onto a disc for another attempt later on - Data impressed himself with her memories, but her consciousness died with her brain.) Anyways, Ira Graves somehow impresses his own brain structure into Data’s positronic brain - apparently killing himself in the process - and seems happy with the result (though he could be deluded - having lost his consciousness, but failing to recognize it). In the end, he relinquishes Data’s brain back to Data’s own mind (apparently suppressed but not sufficiently to oblieterate it), and downloads his knowledge into the Enterprise computer. Data believes, however, that Graves’ consciousness must have been lost in this maneuver, which is further support for the notion that a conscious mind cannot “run on a computer”: a human consciousness can exist in Data’s brain, but not on a network of isolinear chips.

The Doctor, in the end, is in the same situation. As a simulation of a human being, he has no inner life – although he is programmed at his core to behave as though he does. He will claim to be conscious because this makes his humanity, and thus his bedside manner, more effective and convincing. And he may autonomously believe that he is conscious – but, not being conscious, he could never know the difference, and so he cannot know if he’s making an error or not in this belief.

I think that here we can quickly bring up the bio-neural gel packs on Voyager. Aren’t they ‘brainlike’ in their constitution? If the Doctor’s program runs on this substrate, doesn’t that make him conscious? The answer is no – first, recall what Data had to say about neural function and biochemistry. Those aren’t the important factors – it’s the dense interconnectedness that instantiates an immediate conscious experience, and we have no reason to believe that the interconnection patterns of an array of bio-neural gel packs is fundamentally different from a network of isolinear chips. Bio-neural thingies are just supposed to be faster somehow, and implement ‘fuzzy logic’, but no one suggests they can serve as a substrate for conscious programs. And furthermore, the Doctor seems happy to move onto his mobile emitter, whose technology is mysterious, but certainly different from the gel packs. It seems that he is just a piece of software, and that he never really has any physical instantiation anywhere. In defense of his “sentience” (Voyager episode ‘Author, Author’), the Doctor’s crewmates only describe his behavioral capacities: he’s kind, he’s autonomous, he’s creative. No one offers any evidence that he actually possesses anything like phenomenal consciousness. (In the analogous scene in ‘Measure of a Man’, Picard at least waves his hand at the notion that, well, you can’t prove Data isn’tconscious, which I thought was pretty weak, but I guess it worked. I don’t know why they didn’t at least have a cyberneuroscientist or something testify.)

So that is my case: Data is conscious, and the Doctor is not. It’s a bit tragic, I think, to see the Doctor in this way – he’s an empty vessel, reacting to his situation and engendering real empathy in those he interacts with, but he has no pathos of his own. He becomes an ironically pathetic character – we feel for him, but he has no feelings. Data, meanwhile, in his misguided quest to become more human and gain access to emotional states (side note: emotion chip BLECH) is far more human, more real, than the most convincing holographic simulation can ever be.

Wednesday, November 15, 2017

IIT and Blade Runner 2049

Blade Runner 2049 is probably the best movie I've ever seen in a theater - definitely the best sci fi movie I've seen. The movie is a detective story about a replicant - an artificial human - who uncovers a mystery that has personal implications for himself, and broader implications for the dystopia that he lives in.

Are replicants conscious? It's hard to argue that they wouldn't be, and the movie doesn't seem to suggest they aren't. Instead, the movie focuses on memory and how your memories make you real or not - if your memories are false, you are a kind of false person in the world of 2049, and this is how people in the movie justify their enslavement of the replicants. The main theme of the movie is memory - are my memories real? If they're real, are they really mine, or someone else's? Does it really matter?

That stuff is all interesting, but like I said, consciousness is not the question with the replicants. It is the core question regarding one of the main characters: Joi the holographic girlfriend. We can speculate now on whether or not Joi is conscious. The movie is ambiguous about this, but there seems to be a subtext that she is not conscious, but that the main character (K), and we the audience, are supposed to believe that she is. And while there is this ambiguity, the resolution of the ambiguity is deeply meaningful to the story (just like the original Blade Runner, such a significant ambiguity is left unresolved).

First, to be clear on IIT terms: replicants are conscious because they are basically humans with human brains (and humans are clearly conscious) - what makes replicants different is that they are constructed as adults, with memories implanted (or not) to give them a more natural psychology. In the original Blade Runner, replicants like Roy Batty were assumed by their masters to be essentially psychopathic by nature, and the subsequent implantation of false memories was instituted to make them more psychologically healthy. But for a 'system in a state', the truth or falsity of memory is an extrinsic fact - from the IIT point of view (and probably any other modern theory of consciousness, or of the brain) it doesn't matter for the system itself. So replicants are conscious.

Joi, on the other hand, is not a human with a human brain. She's a holographic projection generated by a computer. The hologram of course is nothing but an image; what matters is in the computer. Computers as we know them cannot be conscious in any meaningful sense: the system is a very small set of very very fast switches, entirely feedforward at the most complex, finest grain, and extremely simple at coarser grains where we might see something like feedback or lateral connections. If computers in 2049 are like computers we know, Joi is not conscious - but computers might be very different. Joi has some kind of dedicated local unit, mounted on the wall in K's apartment - perhaps the computer in that unit is a neuromorphic system that replicates the connectivity structure of a human brain. But the picture of technology in the movie doesn't suggest this level of sophistication - I think that if we want to argue that Joi is conscious (in order to counter-argue) we need to weaken some assumptions.

Maybe Joi is conscious, but her consciousness is absolutely different from a human consciousness. That still requires some kind of neuromorphic computer, but it doesn't have to reflect the structure of the human brain, but there's a problem there that boils down to unreliability: if you want a simulation of a human being, you probably want something that's utterly controllable, like a performance - and where it's uncontrollable, it should still fulfill the simulation's desiderata. But consciousness is exactly uncontrollable - it's a closed locus of causal power (according to IIT) - so if your machine is conscious and you want it to simulate a human being, then its consciousness ought to resemble a human consciousness. Joi seems to do a very lifelike impression of a human being, so we have two choices - either she is conscious and her consciousness is specified by a neuromorphic computer that reproduces human neural connectivity, or she is an unconscious simulation.

As I said above, an artificial human brain (in the sense of an electronic device) seems beyond the technology of 2049; but even if it is in reach, it is hard to reconcile with the way Joi is quickly cut and copied over to her mobile emitter. First, it would mean that not only are there artificial human brains in 2049, but they are tiny enough to fit in the palm of your hand; second, it would mean that this brain can be constructed (or connected) in seconds, since remember that according to IIT it is a causally-interacting physical substrate that specifies consciousness - a computer program stored in memory is not causally-interacting in any important sense. I just don't think either of these is plausible in context.

So that leaves us with Joi the unconscious, but highly convincing, holographic girlfriend. Seeing Joi this way is easy when she first appears in the movie, but rather quickly it becomes clear that she is a dramatic and interesting character. Just like any other character in a movie or a play, it is then very difficult to imagine that she is not conscious. We know that the actor playing her is conscious, which makes it even more difficult. But if we try, we can see her as an entirely mechanical projection, like Siri or a chatbot, something that emulates humanity down to little details like evincing emotions like love and hope and excitement, and insistence on her own choices. But evincing emotion is not the same as feeling emotion - while there was an actor (Ana de Armas) that performed the character, there is nothing there on the screen while we watch the movie, and whether or not the actor was ever even real (or whether the performance is entirely artificial) doesn't matter to the fact that the performance on the screen is just a mechanical, unconscious projection. K the Blade Runner is in a similar situation: Joi is convincing, and maybe K himself cannot recognize that she is not intrinsically real, but she is nonetheless unreal.

This seems to me to contribute important meaning to the story, and it does resonate with some clues that are given out bit-by-bit, i.e. it seems the filmmakers probably also thought that Joi is not really real (not conscious). We see ads in the background of 2049 LA for Joi, touting that she is everything you want, and this is exactly what K seems to get. And K, who seems to despair at losing her (and losing other things), seems to recognize this (or remember it) when one of those ads reaches out to him and calls him by the same name that 'his' Joi had given to him. His copy of Joi wasn't even customized (it had all the 'factory settings'), i.e. not only is she unreal, she isn't even unique. So as a conscious being himself, K really is alone - his only companion is just a performance without an actor.

I think that, then, we're left with a hard question that aligns with the main theme of the story, which is (as I understood it) does it matter if my memories are mine, or if they are real? If none of my memories are real, am I real, do I matter? That theme gets a resolution: it is clear that K is real, he matters in important ways, and that his memories, real or not, nevertheless guide him significantly. The hard question is: does it matter if you are real? I mean that from the first person: I know I am real, but are you? Does it matter if you are or not, at least, does it matter to me? Well.. in a sense it is the same problem as the main theme - you are something I perceive, just as you might be something I remember. What matters, we might like to think, is whether or not I am real, whether or not I make my own choices of significance - and as pertains to you, whether or not you (real or not) have a significant role in my reality.

And, I think, K is left in a similar place with both versions of this problem; Joi had an effect on him, it seems clear to me, encouraging him and helping to destabilize him towards his ultimate fate, just as his memories did. But whereas (his) Joi is destroyed and lost to him, his memories - "all the best ones", at least - survive even when he dies, because they also belong to others. This happens to be an inversion of Roy Batty's famous observation that his memories will be lost with him.

Ok, enough!

Friday, September 16, 2016

IIT & Pacific Rim

I'm going to start posting short observations of how IIT would explain or be problematic for certain ideas in sci-fi movies or books.

To start: The film "Pacific Rim", a sci-fi action movie where the main characters are pilots controlling gigantic robots. The pilots control the robot through a direct brain-machine interface, but the job is apparently too much for one pilot so there are always at least two pilots. The two pilots have their minds joined by a "neural bridge" - basically an artificial corpus callosum. While joined, the pilots seem to have direct access to one another's experiences in a merged state called "the Drift" - it seems that their two consciousnesses become one.

This scenario is the predicted consequence, according to IIT, of sufficient causal linkage between two brains - at some point, the connection is sufficiently complex that the local maximum of integrated information is no longer within each pilot's brain, but now extends over both brains. What would be necessary to achieve this? The movie doesn't attempt to explain how the brain-machine interface works, but it must involve a very high-resolution, high-speed parallel system for both responding to and stimulating neurons in each pilot's brain.

One way of doing this would be cortical implants, where high-resolution electrode arrays are installed on the surface of each pilot's brain; this is at least plausible (if not possible) given existing technology. However, none of the pilots show signs of a brain implant, and the main character Mako Mori seems to become a pilot on pretty short notice, although she has apparently been training for a long time - maybe all trainees are implanted? A big commitment.

A more hand-wavy Star Trek kind of technology would involve some kind of transcranial magnetic field system that is powerful, precise, and fast enough to both stimulate individual neurons (current TMS systems certainly cannot do this) and measure their activity on a millisecond timescale (current fMRI systems absolutely cannot do this); however, the pilots simply wear helmets while piloting the robots (although Dr Newton, who almost certainly does not have any brain implants since he is not a trained pilot, does use some kind of transcranial setup to drift with a piece of monster brain), which I think makes a transcranial system very unlikely.

If I had to guess, wireless cortical implants are the only plausible means of establishing the Pacific Rim neural bridge, but some sort of transcranial system hidden in the pilots' helmets and based on some unimaginable technology is not excluded.

Verdict: Pacific Rim's "drift" is IIT Compatible

Wednesday, February 17, 2016

challenge

Irwin Borish versus Edwin Boring.

Go!

Thursday, October 29, 2015

crastinus

Just need to get that 'idiot' post off the top. How's it going?

Lots of news!

Not going to tell you any of it, though. Wait till later.

-andrew

Tuesday, March 10, 2015

sports


The above is a 3D multidimensional scaling representation of the similarity of 14 popular sports. At least 3 dimensions are necessary to represent the similarity matrix; here I've rotated the plot so as to make the different points (sports) clear.

Euclidean distance between the sports is closely related to their similarity, but since this is a 2D projection of three coordinates, I also included edges (lines) between the sports as an extra cue to distance. The thickness and coloring of the edges is mapped to the similarity values (red/thin is "dissimilar", while blue/thick is "similar"). For each sport edges were drawn to the three nearest neighbors - sometimes those were very similar (e.g. the hockey triangle), sometimes very distant (baseball is very close to cricket, but it's next nearest neighbors are very far away: golf and ping pong).

Okay, so what constitutes "similarity" here? I made a list of 28 "sports properties" based entirely on my own subjective knowledge of the included sports. Undoubtedly a better list could be composed, but this is an okay first approximation. The set of properties works as a "present or not" binary value for each sport.



Tuesday, January 27, 2015

IIT and Sci-Fi

(Fake date on this post - wrote it in 2015, not sure of the date - back-posting it here)

This isn't a coherent post - just a list of some random thoughts having to do with IIT and science fiction scenarios that I'm familiar with. I can't claim to have any strength in the latter category: I'm not a big sci-fi reader (especially not in the last few years), and even the best sci-fi movies (I watch 20 times more movies than I read novels) don't tend to take you very far (excepting good time travel movies).

I just think that some of these examples (or others that you, dear reader, might think of) could help in illustrating some interesting IIT-based possibilities.

1. The book Foundation's Edge, by Isaac Asimov, ends on a question about a "supermind", a world where all life - human and otherwise - shares a single planetary consciousness. But it's something earlier in the book that has stuck with me; when the main character, Golan Trevize, is exiled from planet Terminus, he is given an advanced starship. Trevize is confused by the lack of traditional controls - instead, he learns that the ship is piloted by connecting a user's mind to the ship itself. In doing so, Trevize finds that he is now aware of not only the ship's control system, but his perceptual awareness now seems to include the space surrounding the ship: his consciousness now includes the ship:

"And as he and the computer held hands, their thinking merged and it no longer mattered whether his eyes were open or closed. Opening them did not improve his vision nor did closing them dim it. 
Either way, he saw the room with complete clarity—not just in the direction in which he was looking, but all around and above and below. 
He saw every room in the spaceship and he saw outside as well. The sun had risen and its brightness was dimmed in the morning mist, but he could look at it directly without being dazzled, for the computer automatically filtered the light waves. 
He felt the gentle wind and its temperature, and the sounds of the world about him. He detected the planet's magnetic field and the tiny electrical charges on the wall of the ship. 
He became aware of the controls of the ship, without even knowing what they were in detail. He knew only that if he wanted to lift the ship, or turn it, or accelerate it, or make use of any of its abilities, the process was the same as that of performing the analogous process to his body. He had but to use his will."

In IIT terms, the connection between his mind and the ship's systems has been made that allows states of the ship's electronics to causally constrain states of Trevize's brain - at the same time that states of his brain constrain those electronics. There is an irreducible global maximum in integrated information that extends outside Trevize's skull, and into the ship's computers.

Asimov doesn't elaborate on what it is "like" for the ship without a pilot - does it integrate information on its own, constituting a waiting ship's consciousness, ready always to link up with the pilot? If so, the link is like an artificial corpus callosum, joining two independent minds into one whole, and we can suppose that the ship persists as a conscious agent even in the absence of a pilot. Or maybe the ship is disintegrated without a human component - in a state something like slow-wave sleep, with systems online but carefully disconnected in such a way that without a pilot, there is no "ship" - just a collection of parts and mechanisms, like an ordinary machine.

2. Speaking of artificial corpus callosums, there is the excellent Pacific Rim to consider.

Monday, January 12, 2015

coming back online

I'm back!

What to report?

Hm..

You're back without a report?

I might need time to prepare one.

We're hoping for regular reports, you know.

Would you take a picture?

We don't usually publish pictures, but let's see what you have.

Ah, well...

No pictures?

I thought you could take mine.

I see.

Next time I'll have something.

Don't wait six months again, okay?

I'll try.

See you soon.

Saturday, July 12, 2014

habitat

Made this last winter when I realized I was coming to Australia. Found it the other day and dressed it up a bit. From Yarra to Yahara, yep.

Wednesday, July 09, 2014

shouting into the wind

​I usually like io9, but this was pretty stupid, and yet it got a big response. It's a blurb on an essay, "On the Emptiness of Failed Replications", by Jason Mitchell, a social psychologist/neuroscientist, where he's criticizing some of the current discussion in the social sciences (and peripheral quarters). I've found other severely critical discussions of the essay, and none positive, although the negatives are (it seems) already entrenched in their opinions about how things *must* be done. Given my habitual uncertainty about everything, I think my take is fairly objective.
I haven't read most of the comments on the io9 article (just scanned the first page's worth), but it seems they are mostly agreeing with the negative post, and most of them don't discuss the essay *at all*. A lot of them are just bland 'social science is pseudoscience' stuff, but they're letting this blurb (assuming most of them didn't *read* the essay) feed their preconceptions. The comments on other blog posts are similar, though the quality of the posts themselves are generally better (if pedantic). I'm going to do some apologia here, since I'm avoiding working on a paper (or papers) of my own.
Mitchell's writing about the replication push, and explaining why, in basic philosophy-of-science terms (i.e. in terms of falsificationism - cf. previous post) replication as standard practice is not *scientific* practice. **Searching for null effects is meaningless**, he says, because there are vastly more ways to do an experiment wrong, and fail to detect an effect, than there are ways to do it properly. The scientific way to challenge a finding is not to try to reproduce it by following the steps in a methods section - it's by finding out how such a finding *could* arise, and explaining that in functional terms. The worst case is that the finding arises through fraud, and Mitchell goes pretty far in pointing out how a replication push can take the form of a witch-hunt.
Of course many science-minded folk are biased against the social sciences, in part because there have been a number of prominent frauds recently, but also because the methods are hard to discern. Social psychology, and most of experimental psychology at that, are different from the 'hard' sciences in important ways, but they are still scientific practices. It's not pseudoscience to say that you can measure a person's thoughts or perceptions or feelings or predispositions, although the measurements can be done well or done poorly.
There is one fundamental difference between the social sciences and the hard sciences (physics, chemistry, biology): in studying a human mind, you have to communicate with it, and every human mind is different - even a single human mind is different from day-to-day. Running a psychophysics or cognitive experiment effectively requires that you take this person, quickly figure out the contours of their personality (in a quick discussion or screening interview), and set their thought processes in such a way that you can *then do the experiment*. And furthermore, especially when it comes to in-depth studies like in real psychophysics, some people simply can't do the experiments; there are good psychophysics subjects and bad psychophysics subjects (in my experience, you might lump these into "people who are conscientious and have a high capacity for introspection", and "people who don't listen and who get bored by themselves"), and part of doing these experiments well is weeding out the bad ones. Usually it's pretty easy - a subject does some training blocks that produce crummy data - you try to explain to them how to improve their performance; they fail to improve, and you fire them. The foregoing steps are an art, the practice of communication and guidance and control, and some people are better at it than others. This is a relatively minor point in the essay, which is focused on replication, but it seems to have caught a lot of attention from the 'social science isn't science' folks.
I say all this as a social scientist, under general definitions. I'm a psychophysicist, a neuroscientist, and an experimental psychologist - most of my research is quantitative and computational and model-driven, with human beings (their behavior or their brains) as the source of my data. I completely recognize the situation that Mitchell is describing - I've had to explain these issues to juniors and colleagues many times over the years, though I don't know if I'm always convincing. I thought it was a great essay, and worth passing on. And, at the end of the day, I check the box 'psychologist', which puts me in the camp under attack, and so I feel I need to raise my tiny voice in defense of Dr Mitchell. Not that anyone comes here to read what I write, but I like to remember things, so.. meh.

Wednesday, June 25, 2014

The IIT is falsifiable

Sadly I have come to a period of procrastination - five straight months of work, and here it is. It's understandable; in coming up with some final analyses for what is sure to be one of the best papers I ever put together, I've allowed the dimensionality of my data to explode, at the same time that I'm trying to rewrite the code that produces that data so that it can be run on a supercomputer, and at the same time that I'm trying to generate a poster on the work with an eye to current developments. So, the paper has, for this week at least, ground to a halt, and I'm sitting here staring at pages of code and thousands of .mat files and making spreadsheets to try to force some organization on the process.

Okay, deep breath.

I'm doing some highly integrative neuroscience - I'm applying complex information-theoretic measures to human neural data, in such a way that behavioral data produced by those humans can guide my interpretations. It's complicated.

The theory I'm working under is called the Integrated Information Theory (IIT) of consciousness. Consciousness is a fraught area of science and philosophy - everyone has an opinion, even if they think they don't - and the people who know their opinions are really, really excited about them. Some of those people are kind of weird. But the IIT, I think, is actually a rather mundane theory - it's very abstract on the one hand, but it doesn't, by its nature, make any big metaphysical claims about existence, or try to tie itself to evolution or quantum physics. Rather, the IIT aims to be a theory of the neural correlates of consciousness (NCCs) - why is it that some parts of the brain correspond to conscious experience, while others don't? At this level, it competes with other theories of NCC, most notably the Global Neuronal Workspace theory (GNW), although they take opposite approaches - the GNW looks first at the brain, at the NCCs themselves, and tries to explain the specific neural processes that we can see, objectively, are producing consciousness. The IIT, on the other hand, looks first at conscious experience, and, from the inside-out, tries to explain what properties consciousness has by proposing an algorithmic or mathematical expression of that experience.

I know the IIT better than the GNW, and I prefer the approach of the IIT, but I think that eventually these two theories will meet in the middle, and we'll have a real, general theory of consciousness. Might not be for a while, but it will happen.

What the GNW gives you is a description of the brain's mechanics, and post-hoc philosophizing about how certain types of connections in the brain distribute information throughout a central network, and that this distribution is the promotion of something to the status of consciousness. This is based on seeing, objectively, that these things are correlated, so the GNW is a theory of the NCCs at its very root. To some eyes, this makes it the more plausible competitor, since it's based in objective reality.

The IIT, being based in subjective experience (by extracting 'axioms' about consciousness - it's integrated, it's informative, it's bounded, it has structure) is different from the GNW especially in that it isn't specifically based on any principles of neuroscience. It's a mathematical theory, a theory of information transmission in networks. It is, of course, expressed with the obvious intention of being applied to facts of neuroscience, and it seems to do well in this respect. Put simply (I'm obviously not trying to explain the IIT here), if you point the IIT at a brain, it should give you back a prediction (you know what I mean) of whether or not that brain is conscious, which parts are doing the job, and how the doing is organized. This last part is one thing that makes the IIT so interesting - it gives a way of describing the internal structure of what it claims is conscious experience.

So, this is what the IIT is intended for - to predict how consciousness arises in a brain. In this it is indeed falsifiable. An attack I've seen on the IIT from several sources - most recently some of the duller commenters on Scott Aaronson's much better attack - is that it isn't falsifiable, but this is clearly not correct. Tononi (the theorist behind the IIT) gives one clear example of how to falsify the theory: take two substances, both of which disrupt neural activity, but only one of which degrades the capacity of the brain to integrate information (in the specific terms of the theory). You could equalize the substances in other ways - make it so that one impairs attention, or some other manipulation that under a given theory should destroy consciousness - and then find out whether or not your (human) subject has lost consciousness. The IIT should predict exactly which interventions disrupt consciousness and which do not. In fact, it should predict which parts of consciousness are degraded - is vision lost, or hearing, or etc. If the theory fails, then it's wrong. So, the IIT is falsifiable.

But when the critics say it's unfalsifiable, they aren't thinking about the object of the theory - human (or animal) consciousness. They're thinking about panpsychism, and thus missing the whole point. It's true - the IIT predicts that systems that aren't brains can possess consciousness, and that it can be completely alien to human consciousness - no perception or cognition, for example. To many people this is 1) totally incoherent (this is Aaronson's criticism) and 2) unfalsifiable and thus the mark of a bad theory. But that a theory generates unfalsifiable statements is never grounds for dismissing the theory - thsi is basic logic (cf. Popper). What matters it that, in the realm where it's meant to explain something, the theory does its job. If you have two theories that explain equally well, but one generates incoherent, untestable predictions, then you can proceed with parsimony, but you have to have the alternative first. Occam's razor can't be used when you have no competition (unless you'd rather have no theory at all - and this is an ideological point rather than a scientific approach to a problem).

And anyways, even the panpsychism problem (taking the meaning of panpsychism very loosely, since IIT doesn't predict that everything is conscious - just that things that aren't brains can be conscious) isn't definitely untestable - the theory predicts that different conscious things are, in principle at least, linkable. So, if IIT says that a certain not-a-brain system is conscious, then the IIT adherent can simply plug his brain into the object, and if the theory predicts that the adherent's consciousness is linked to the not-a-brain system, then firsthand knowledge is the proper test. That's science fiction stuff there (the film Pacific Rim's drift technology was an implementation of the idea), but the IIT says it's technically possible. So, the ultimate test of the IIT might turn out to be technology - if every IIT-based device fails to produce predicted effects on consciousness, then the theory will be abandoned.

That's all I have for now. June is almost over. One more month in Australia, then home. Back to the grind...

Tuesday, June 03, 2014

Sorry May


Okay, so this picture illustrates why I am not a Tegmarkian. Tegmark, if you don't know, is a clever cosmologist at MIT who's put forward (a book on) the thesis that mathematics is the ultimate reality, and that all mathematics is in fact a kind of reality - that there is a mathematical multiverse, which we know exists on account of the mathematics existing.

So I don't buy this. I'm diametrically opposed to this idea. Not opposed, really - I don't care too much, but I am opposed in that I believe the complete opposite. Mathematics - and physics as a subset of mathematics - is an artifact of the human mind, that's all it is. The fact that the world exists in some form is curious, although it seems incoherent to me that we can actually know anything about its true nature - but to suppose that its true nature is mathematics seems so backwards that I just wanted to write some things down.

I get where he's coming from. The world does exist, there is a reality, and it is somehow regular and consistent - it has properties that repeat or sustain, and why should it? Its continuities and discontinuities are all so numerically describable, and why should they be? And the most basic elements that we know to exist - photons, quarks, magnetic fields - seem to be perfectly and completely described as systems of numbers. And why should this be?

My mind seems to have taken the easy way out, because it just screams: but numbers and math are things that human minds *do*! They describe the world because the brain is a description machine, that's what it *does*! If the curious thing is that the description is so perfect and complete, then I have two responses - the space of possible descriptions that the mind can form is so vast, so impossibly vast, that it would be surprising if we could *not* find consistent systems of description for the world; and no description of the world is by any means *complete*.

The completion point is worth going on about. The scope and complexity of the natural world is impossible to comprehend. It's absolutely impossible to describe it all - and I'm saying this as a scientist with full faith in science as an endeavor for helping us to understand the world. We might choose some very narrow sliver of reality and subject it to intensive study, and then, there, we can describe it in such detail that we feel that it's okay to say we've basically got it all down. But that's it - those little, tiny, infinitesimally small splinters, and we think we have a complete description? What we have is a consistent system - mathematical physics - that can be used to describe anything we come across, but each description will be new, different, from what has been seen before.

So no description is complete. Okay, maybe that's a straw man, but I don't think so. Tegmark wants to claim that not only is physics a (potentially) complete description of our reality - or no, not a description, but *the thing itself* - but that realities we haven't yet encountered, i.e. realities *outside our reality* are contained within it. He likes the example of the discovery of Neptune. Astronomers had noted disturbances in the orbit of Uranus, and finally realized that there must be another planet even further out - they realized this mathematically, in such detail that they knew where to point their telescopes to find Neptune, and they did so, successfully.

Tegmark wants to use this example to imply that mathematics is a kind of tapestry containing all reality, and that by following it out from what was known, an *entire planet* was discovered, first in the mathematics, and only later by human senses. But this doesn't prove any kind of point about the reality of mathematics, and it's not even true, strictly, that Neptune was first discovered in a mathematical form. It was first discovered in the form of its gravitational influence, which affected Uranus. It's just that at first, astronomers didn't understand what they were seeing - they had to *do some math* in order to understand. But the data were all there - the measurements of Neptune in the flesh were there already, before Galle saw it with his own eyes (and others had seen it before, all the way back to Galileo, albeit not knowing what they were looking at).

The point here is that, really, new knowledge about the world can only come from new data about the world. Mathematics based on reality that has been observed - i.e. physics - can then tell you how to understand those data, but it is only that, a tool, an activity of the human observers. It doesn't exist outside of human endeavor. I am dead set in this opinion.

Anyways, so I basically had that conversation with myself last night on my walk home, and then I made that figure. It should be self-explanatory, but just in case: the biggest circle, the purple one, is the realm of all possible human thought. The circles within are not to any idea of scale, of course. There are many domains of human thought,and the next two that I've outlined are descriptions and axiomatic systems. Both of these I mean in the broadest sense you can imagine.  Physics falls within the realm of axiomatic systems of description, or it should (Hilbert's sixth problem). Within axiomatic systems you have consistent axiomatic systems, which should contain a correct physics, if it exists - i.e. if the Standard Model and General Relativity could be united. Taken as separate systems, I think that each of these theories alone counts as a consistent system, but together, so far, they do not.

Tegmark's reality is the domain of consistent axiomatic systems of description, of which our physics is (presumably) just a tiny part. Any other consistent system of physics would also fall in this domain, and Tegmark believes that each of these systems must also correspond to its own universe, just as our physics corresponds to ours. I think it's a fantastic idea, which I might illustrate by putting a big 'fantasy' circle somewhere in there, in between human thought and physics.

Wednesday, April 23, 2014

last scion?

Procrastinating pretty hard today.

For some reason, I've been thinking about this lately: in several generations of my family, I am the only male bearer of the name 'Haun'.

How many generations, you ask? Well, I spent the last 20 minutes trying to clear that up. I'll write it down now, and get back to work.

Of course, what does a patrilineal line really matter? Just because it's a thing, I guess. There's the whole Y-chromosome thing, but that's pretty uncertain anyways, what with adoptions and such. We'll just go with the name, as a sign, as the thing that we know is inherited.

I have one sibling, a sister. So, that's generation one.

My father is David; David has one brother, James. James has three daughters, no sons. So, I have no male patrilineal first cousins. That's generation two.

My father's father was James; James had two sisters, no brothers. So, I have no male patrilineal second cousins. That's generation three.

My father's father's father was Yandell. Yandell had five sisters, no brothers. No male patrilinear third cousins: that's me alone in generation four.

My father's father's father's father was Robert. Robert had two elder brothers. All three were born in the 1830's and 40's. The eldest, Charles, died at age 24, in 1862, possibly in the Civil War, though I don't know if Tennessee Unionists were dying yet in 1862. The second brother, Caleb Powell, had two sons; each of these had sons; and as far as I know, there are at least a few of their grandsons and great grandsons and great-great grandsons (my generation). So, I may have some male patrilineal fourth cousins - but I don't know of any of them, and can't know for sure.

So, we'll say that in at least four generations, I am the last male heir of Robert Franklin Haun, born in the 1840s in Jefferson County, Tennessee. My nearest patrilineal male relative in the same generation is thus no closer than a fourth cousin - we have to go back at least 140 years before my birth to find that fork in the road.

The Road of Haun.

Tuesday, April 22, 2014

april report

Sorry April.

Not that I haven't done things this month. May as well just do a quick report.

Not in any particular order:

Finished the Mass Effect games. Excellent story, very effective, really wraps you into the main character. When it all comes to an end, you feel really invested, so I guess I see why some people didn't like the ending, but they by and large were probably stupid people. Sorry. It was excellent, will stick with me.

Rented a car and drove around East Melbourne - Dandenong and Yarra territory. Had a tuna sandwich in the town of Gembrook, which looked a lot like Kingston Springs, except without an I-40 running through it. Took the guy 30 minutes at least to get around to making the sandwich - one guy, >10 customers. I went to the Upper Yarra Reservoir, where  most of our water comes from. It was nice. Nice to drive. Almost had an accident a couple times, but it wasn't that hard to get used to the reversal. A little worried about driving when JP gets here, afraid that when we're talking and I'm distracted, I'll revert to normal orientation. We'll see.

Watched a total lunar eclipse, the best one I've ever seen. The moon rose as the sun set, and it was at peak eclipse - not even red, very dark, could barely see it. Then, a threshold was crossed, and light sprang out of the southern edge, and it slowly, over another hour almost, became a full moon. Really nice view, out behind MBI.

I have a serious beard now. See how much longer it lasts.

Started writing a paper on my current project. Procrastinating on rewriting the blur adaptation paper. Need to be working on a grant proposal for UW by the end of the week.

On migraine business: Saturday, driving day, had a headache most of the day, but I also slept until 10 that day and started pretty slow, so it was a forced one. Seeing lots of weird transparent phosphenes lately, but I think the days of aura are past. Future maybe. But not present. There may have been a couple other very minor headaches in the last couple of months, but I didn't note them. I really think the "being in shape", i.e. TKD, was making me susceptible to migraines. What to do...

What else...

Guess that's it. I should be writing more lately, essaying and journalizing, but somehow it isn't happening. Working seriously, and writing the past couple of days, but most of my thinking has been done on the long walks to and from lab, rather than in journal entries. We'll get back to it, don't worry. I still love you, xuexixs.

Sunday, March 30, 2014

wilson's prom

a list of things I saw, heard, and did:

bull ant: someone wanted me to come stomp it, but i chased it across the street instead. apparently the sting can be pretty bad. she was super aggressive - i chased her off with a stick, but for the most part i had to actually flip her away, foot by foot, because otherwise she'd rear up and point her mandibles at me, very challenging.

kookaberra: loud, loud birds. middle of the night, both nights, awoken by competing kookaberras, laughing/screaming at eachother, "aaaAAAAAAAaaa!!! aaaAAAAAAAAaaa!!!"

wombats: i had heard stories about the rudeness of the wombat, and was not let down. once the sun is setting the wombats wander through the campsites, looking for food on the ground, tipping over coolers ('eskies'), looking on tables, getting into cars and tents. they're like tiny bears, or gigantic hamsters. they're completely nonchalant about it. you go to chase one off, and he's not skittish like your typical wild mammal: he just ignores you, and you have to really get serious and yell and swing a foot at him, and then he reluctantly backs off and trots off to a different site. surreal experiences with the wombats, especially once Nao and family appeared, and you had this Japanese family following one around, and all you can understand is, 'wombato! wombato!'

crimson rosella: a beautiful parrot, saw them several times. one on saturday afternoon, when Farid and I were relaxing at camp while others were away - this one landed on our table and started poking through things, tipping over containers and plates, like a regular curious bird, but then he started *picking things up with his feet* - holding a cracker in his hand and taking bites off of it, or holding up a bit of aluminum with nutella smeared on it and holding it as he licked off the sweet stuff. never seen a bird behave like that, using claws as hands.

brown honeyeater: there are lots of honey eaters in the neighborhood here, the ones with the yellow streaks behind their eyes that, to me, seem a bit unhinged. a visitor to our camp on saturday was, i think, a brown honey eater, very different looking, but also very quizzical and odd. i guess all birds are kind of odd, but this one walked around the whole camp, checking every location one time, never circling back, walking around our feet, tilting his head left and right to investigate this corner or that corner. it was like having a pet honeyeater (though at the time i was calling him a thrush - i'm still not sure it wasn't a thrush, but my visual memory right now is a better match for 'brown honeyeater').

fairywrens: i believe that these were *superb* fairywrens. tiny, tiny birds, smaller than a sparrow, closer in scale to a hummingbird even. but they hopped about like sparrows, mostly in bushes or underbrush. some of them, the males i suppose, were tinted blue. their most striking feature was the tail, sticking straight up like an antenna.

a big lizard: at first i thought i'd found the fairywren motherlode, walking along a brush-covered mound next to the campsite, so i went back to get the camera and take some pictures. when i got back the fairywrens were all gone, and instead i found a big blue-gray lizard. no idea what it was - maybe 6 inches long, stockier than a skink, shorter legs too, but since skinks are really my main point of comparison that's not too much information. anyways, a big lizard. i got some video of him.

lots and lots of millipedes: once the sun went down, the millipedes came out, and some could still be found during the day. they were everywhere, thousands of them, and it was impossible not to step on them. tiny, not the big imposing ones - these were all about an inch long, black or dark brown. not sure what that was about.

no mosquitoes: there were no mosquitoes! at all!

'mictyris' soldier crabs: a whole colony of them, hundreds, maybe a thousand. tiny crabs, each about an inch across, iridescent blue and pink shells, bodies shaped like a cicada's head, with this impression strengthened by these bulbous lateral patterns on the carapace that look like compound eyes; but no, the eyes are little black dots on short stalks right above the maw. they dig little holes in the sand to wait out the tide - i provoked one into burying himself, he did it in a quick spiral motion, creating a cylindrical hole, and he was then able to close it over himself. very neat. they left pellets of sand all around their area, which i've read are the results of their eating habits: they suck stuff out of the sand and spit it back out, leaving these little balls. hence the name, 'mictyris'.

anemones: saw anemones on rocks.

there were other birds. saw some little kangaroos and a pair of emus on the drive into the park.

also: saw the milky way, and the southern cross. lots and lots and lots of stars. i don't think i've seen the milky way in at least a decade. despite the haze - the skys were generally clear, but still a bit foggy - and the lights from the camping area, it was dark enough to see the milky way, it was magnificent. the southern cross is much smaller than i expected, but i got to like it. it's more of a diamond than a cross, or a kite.

Thursday, March 27, 2014

anxiety, nighttime kitchens, broken foot

Yep. So, I guess 2014 is the year that HAZ goes back to sleep, waking up now and then for a random update.

I suppose that when I'm especially introspective or, dare I say it, depressed, I write here more. Or anxious. Which is to say that lately I haven't been these things. There's a bit of desolation, loneliness, but I know that's temporary, so it's not actually that hard. And what I'm doing otherwise, during the days, is so fulfilling that there's not much energy left to fuel anxiety.

So that's why I'm not here much lately.

Tonight, as I left the lab, about 8:30, I went to the kitchen to get a candy bar. I don't usually do this, but my foot is kind of broken and I felt like I needed an extra boost for the walk home.

Coincidentally, the candy bar was called 'Boost'.

I walk into the kitchen - or cafeteria, or as the Australians call it, 'tea room', and it's dark out, but the lamps over the lunch tables are on, and there's a smell, something I can't identify, musty, an odor that didn't belong there. And suddenly I'm a kid, sneaking into the kitchen in my mother's parents house after everyone's gone to sleep, to look through the cupboards for cookies or crackers. The light was somehow the same, the smell of course was key - memory is so strange - and, certainly, my action was parallel. A few times I've done the same thing, probably once a week to be honest, but there's always someone else there, and I'm too embarrassed to let someone see me taking a candy bar. Ha!

So I stood there for a dozen seconds and observed the memory, and I could *see* Elizabeth's kitchen, and feel the space of their house around me. The light, the smell, the feeling of night time and quiet and not wanting to wake anyone, and being by yourself.

What else is there? Interesting birds. Doves with tall feather crests on top of their heads. Mynas fighting with their reflections in windows. They're my favorites lately, jovial, nervous birds.

Going on a camping trip tomorrow! With a broken foot! I went running Tuesday, barefoot, and it was totally fine. Short on oxygen, but didn't notice a single mechanical problem, not one false step, and I was concentrated on the feet, on the ground. But Wednesday morning I get out of bed and it hurts - and the long walk home at night, man oh man, on a bad foot. I strained some ligament or tendon or something, can feel a bruise, left foot, outside/top about halfway down. At first it felt like it was in the ankle or heel, but it's migrating. Hope it's better tomorrow, so I can do some hiking..

Had a sort-of headache a week or so ago, but they seem basically to have stopped, so we may need to revise the subtitle of this journal.

Wednesday, February 26, 2014

Australia 1

Why no Australia posts, HAZ?

In the first days, there was the tremendous heat (>40 degrees - I need to say that in C just to keep up the habit), the weirdness of the sun being in the wrong half of the sky (makes it hard to find your way), and of the cars (mostly Japanese, lots of Mitsubishis and Toyotas) and roads all being backwards. Aside from that it's all pretty familiar. Public transport and beer are really expensive. The peanut butter comes in tiny jars and the legendary Vegemite is almost inedible. Not sure what to do about this situation, but I will cope.

This post isn't about peanut butter and cars, though, it's about animals. I've been living in Boston for almost 5 years, where the only animals are rats, pigeons, and seagull (i.e. rats and flying rats). I keep expecting to run into a giant spider somewhere - I was excited to see the big huntsmen that supposedly live around here - but it hasn't happened yet. I did witness - and fail to react quickly enough to stop it - a bunch of fellow party-goers going to the trouble of vacuuming up a poor white-tailed spider, which apparently is something of a weaksauce Australian brown recluse. There's a flowering bush in my backyard that bees love, I sat out this past Sunday afternoon and watched them up close for half an hour. I watched a possum run down power lines for a block. I saw the biggest ant I've ever seen, an inch long, she was carrying a leaf that must have been very important to her. Saved a big snail from the sidewalk.

Like I said, I've been in Boston five years, so I've come to appreciate these little things more than I used to.

I'd say the best part of the experience so far, as far as visiting a new land goes, is the birds. All the birds are different! There are lots and lots and lots of birds in the neighborhood, all songbirds (counting crows). The crows - or are they ravens? - sound different from American crows, but a lot like the crow noise that Jingping makes - so maybe Eastern crows all sound like this? It much less like CAW, and much more like MEH. I prefer the CAW, but I guess neither is a very musical sound. There are lots of magpies, and they make very interesting sounds, musical, complex noises, like a cowbird but much more elaborate. They may be imitating other birds too, but I'm not sure.

In the mornings I hear lots of different sounds that I haven't tied to anyone in particular - there are mourning doves - or something very similar, except with a spotted collar - that sit in pairs on rooftops, and they make a mourning-dove-like call but a different tune than the American ones. And there are mynas, I think - mid-sized songbirds with yellow streaks extending behind their eyes. These are basically starlings, colored differently, making similar croaking-chattering noises, stalking around on the ground looking for food.

There are lots of fruit trees in the neighborhood, and they're often full of these colorful birds - completely colorful, colors of the rainbow - which I think are ringneck parrots. I've seen them in pairs or in flocks. Most colorful birds I've ever seen, very beautiful. I think they chatter a bit, but I haven't noticed distinctive sounds. I've seen swallows catching bugs, and walked around a corner the other day to surprise a pair of brown ducks - odd since there's no water anywhere nearby, I suppose they were resting on their way somewhere.

Then there are the white cockatoos on campus, huge flocks of them. These are mid-sized birds, and they make a variety of noises, ranging from chicken clucks to cat yowls to baby cries. I walked through a host of them occupying some trees last night, and kept laughing out loud, they were the most ridiculous noises I'd ever heard coming from wildlife.

When I'm walking home at night, after dark, the birds are quiet, but every minute I see a crow fly overhead, on his way somewhere. The crickets at night are very loud, loud and disorienting. I've gotten down and picked through grass trying to find one, and failed, despite it sounding like it was right there in front of me.

Okay, that's it.

Wednesday, February 19, 2014

change of venue

Almost a month since my last entry. In that time, I've moved to Australia and become a neuroscientist.

Just in the last few days, I've gone surfing (or tried) and, for the first (and maybe only) time, made what might be an important scientific advance. I'm working on something really, really interesting. I won't tell you about it right now, but aside from missing my wife and sort of general decrement in living conditions, I am honestly really glad I came down here.

Melbourne weather is hard to deal with. I need a bike and a raincoat. The people here are generally nice. Beer is super expensive.

Just can't think of much to write, strangely. I'm in an investigative mode, very little writing lately. Much writing to do, but for once I feel like it can wait. Great things going on!

Friday, January 24, 2014

overflow

quick note on something unimportant:

my qualia clearly overflow my behavioral access to them.

say there's a thing here. a can of beer (cans I think are more prosaic), with its characteristic physical attributes.

when i look at it, i have an experience of it. much of that experience is strongly, closely correlated with the physical attributes of the can. you can take this for granted, or you can confirm it by ask me questions and carefully collecting my responses. the can's geometric properties, its shape, its albedo and texture, things like that. other parts of my experience are not correlated with attributes of the can, but are quirks of my own systems. colors, a/modally completed contours, illusory depth from shading, meanings of symbols, etc.

all of this you can, in principle, recover from me by making certain types of measurements - basically, you prompt me with questions or decisions, and i give you responses. these can be words, numbers, button presses, ratings, slider adjustments, essays, etc.

let's say i give you all the time in the world. you have time to run every test you can think of. you can run every task until performance asymptotes, and you can estimate any parameter that you can dream of. every aspect of this can of beer that i have any ability to respond to, to access behaviorally, is your data.

is there anything left to my experience that you have not collected, that you cannot find in your data and models?

my qualia are overflowing!

(you can make this same sort of argument for physics - i measure the physical attributes of an object until i can't find any more to measure. you can then point out, well, isn't there something left? the thing itself? but then i can ask you, what is there, about that thing, that is not described or captured in my measurements and models? what can you point to? that the thing is *there*? well, I have its thereness perfectly specified in a coordinate space. that the thing is *substantial*? well, i've got every aspect of its substantiality described by my equations of quantum electrodynamics. what is left? i think that, ultimately, there's nothing for you to point to, because in every case, i can show you how i've measured or modeled whatever it is. i don't see how the case is the same with phenomenal experience.)